TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	AI-NAHRAIN UNIVERSITY/COLLEGE of SCIENCE	
2. University Department	Department of Computer Science	
3. Course title/code	Computation Theory I	
4. Programme(s) to which it contributes	B.sc Computer Science	
5. Modes of Attendance offered	Full Time	
6. Semester/Year	First Semester/ 2022-2023	
7. Number of hours tuition (total)	30 theory + 15 Tutorial	
8. Date of production/revision of this specification	2022-2023	
9. Aims of the Course To introduce the Mathematical foundation in computation theory, formal languages and		

the theoretical background in algorithm design and problem solving.

10. Learning Outcomes, Teaching ,Learning and Assessment Methods

A- Knowledge and Understanding

A1. Understand the Formal language theory as the base for all computer programming languages

A2. Understand that automata theory is a base for compiler design

A3. Understand that the automata theory is a base of many computer science model

A4. Understand that automata theory especially Turing machine give the basic understanding of computers and computer algorithm

B. Subject-specific skills

B1. Understand the relation between formal grammars and automata

B2. A clear understanding of the theory concepts such as regular expression deterministic and non-deterministic , push down automata etc. and the relation between them.

B3. Have clear understanding of minimizing grammars and automata

C. Thinking Skills

C1. Think how to minimize grammars and automata in procedural form

C2. Think how to prove that many computational problem

can be formulated using computational principles
C3. Think how to remove the ambiguity from the program statement he/ she designs or wrote.
C4. Think how to move and across difficulty in solving problem
D. General and Transferable Skills (other skills relevant to employability and personal development)
D1. Understand how to transfer theoretical models from form to another
D2. Understand how to transfer problem from its .theoretical origin into model for computing application
D3. Understand how to analyses and simplifying a problem to be solvable and easy to be solved.
Teaching and Learning Methods
A mixture of normal lectures, homework assignment and self- reading.
Assessment methods
60% for the formal final writing exam
25% for mid-term formal written exam
10% Quizzes and class discussion and oral answering questions
5% for homework exercises

Course Structure .11					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessmen t Method
1	3	Necessary mathemati cal review	Mathematical preliminaries	Normal lectures and solving examples	Quizzes and asking ideas about lecture material
1	3	Introducin g formal languages	Basic definition of formal languages and formal grammars	=	=
1	3	Descriptio n of all formal languages	Chomesky Hierarchy of formal languages	=	=
1		Regular languages and represent	Regular and languages and regular grammar	=	=
2	15	ation by different models	Regular expression	=	=
2			Finite State automaton deterministic and non-	=	=

2	6	Algorithm for operation on regular languages	deterministic Decision algorithms on regular set	=	=
2	6	Properties of regular languages	Gular closure properties of regular sets	=	=
2	6	A model for a simple computer with out put	Finite state automata with output	=	=

12. Infrastructure		
Required reading:	Well-chosen text book only	
· CORE TEXTS		
· COURSE MATERIALS		
· OTHER		
Special requirements (include for example workshops, periodicals, IT software, websites)	No special requirement need	

Community-based facilities	
(include for example, guest	
Lectures , internship , field studies)	